Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate measurement of net radiation in the high-latitude Arctic regions is challenging since rain and snow events often introduce substantial measurement errors. To reduce the precipitation-induced measurement errors of downward radiation, customized data-driven methods are developed to reconstruct downward radiative fluxes from the biased radiation measurements. This study uses four years of field data across ten plots covered with forest, trees, and tundra in the Polar Urals from July 2018 to July 2022. Rain and snow on the radiometers absorb and block shortwave radiation and emit longwave radiation, leading to underestimation of downward shortwave and overestimation of downward longwave radiation. Snow causes more errors than rain. Seasonal variation of reconstructed net radiation for three dominant vegetation types indicates that their differences are most pronounced in April and least in September. Furthermore, forest and tree plots consistently exhibit higher magnitudes of net radiation and longer seasons of positive net radiation than tundra plots. This study advances methodologies for reconstructing corrupted net radiation data in the Arctic and offers insights into the variability of net radiation patterns within the forest-tundra ecotone.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract Air temperature (Ta), snow depth (Sd), and soil temperature (Tg) are crucial variables for studying the above- and below-ground thermal conditions, especially in high latitudes. However,in-situobservations are frequently sparse and inconsistent across various datasets, with a significant amount of missing data. This study has assembled a comprehensive dataset ofin-situobservations of Ta, Sd, and Tg for the Northern Hemisphere (higher than 30°N latitude), spanning 1960–2021. This dataset encompasses metadata and daily data time series for 27,768, 32,417, and 659 gages for Ta, Sd, and Tg, respectively. Using the ERA5-Land reanalysis data product, we applied deep learning methodology to reconstruct the missing data that account for 54.5%, 59.3%, and 74.3% of Ta, Sd, and Tg daily time series, respectively. The obtained high temporal resolution dataset can be used to better understand physical phenomena and relevant mechanisms, such as the dynamics of land-surface-atmosphere energy exchange, snowpack, and permafrost.more » « less
-
Abstract Improved modeling of permafrost active layer freeze‐thaw plays a crucial role in understanding the response of the Arctic ecosystem to the accelerating warming trend in the region over the past decades. However, modeling the dynamics of the active layer at diurnal time scale remains challenging using the traditional models of freeze‐thaw processes. In this study, a physically based analytical model is formulated to simulate the thaw depth of the active layer under changing boundary conditions of soil heat flux. Conservation of energy for the active layer leads to a nonlinear integral equation of the thaw depth using a temperature profile approximated from the analytical solution of the heat transfer equation forced by ground heat flux. Temporally variable ground heat flux is estimated using non‐gradient models when field observations are not available. Validation of the proposed model conducted against field data obtained from three Arctic forest and tundra sites demonstrates that the model is able to simulate both thaw depth and soil temperature profiles accurately. The model has the potential to estimate regional variability of the thaw depth for permafrost related applications.more » « less
-
Abstract Ground heat flux (G0) is a key component of the land‐surface energy balance of high‐latitude regions. Despite its crucial role in controlling permafrost degradation due to global warming,G0is sparsely measured and not well represented in the outputs of global scale model simulation. In this study, an analytical heat transfer model is tested to reconstructG0across seasons using soil temperature series from field measurements, Global Climate Model, and climate reanalysis outputs. The probability density functions of ground heat flux and of model parameters are inferred using availableG0data (measured or modeled) for snow‐free period as a reference. When observedG0is not available, a numerical model is applied using estimates of surface heat flux (dependent on parameters) as the top boundary condition. These estimates (and thus the corresponding parameters) are verified by comparing the distributions of simulated and measured soil temperature at several depths. Aided by state‐of‐the‐art uncertainty quantification methods, the developedG0reconstruction approach provides novel means for assessing the probabilistic structure of the ground heat flux for regional permafrost change studies.more » « less
-
Abstract Science, engineering, and society increasingly require integrative thinking about emerging problems in complex systems, a notion referred to as convergence science. Due to the concurrent pressures of two main stressors—rapid climate change and industrialization, Arctic research demands such a paradigm of scientific inquiry. This perspective represents a synthesis of a vision for its application in Arctic system studies, developed by a group of disciplinary experts consisting of social and earth system scientists, ecologists, and engineers. Our objective is to demonstrate how convergence research questions can be developed via a holistic view of system interactions that are then parsed into material links and concrete inquiries of disciplinary and interdisciplinary nature. We illustrate the application of the convergence science paradigm to several forms of Arctic stressors using the Yamal Peninsula of the Russian Arctic as a representative natural laboratory with a biogeographic gradient from the forest‐tundra ecotone to the high Arctic.more » « less
-
Abstract This study develops a novel general framework to project the permafrost fate with rigorous uncertainty quantification to assess dominant sources. Borehole temperature records from three sites in the Russian western Arctic are used to constrain the uncertainty of a high‐fidelity freeze‐thaw model. Projections from 9 Global Climate Models (GCM) are stochastically downscaled to generate future trajectories of surface ground heat flux. Under the two emission scenarios SSP2‐4.5 and SSP5‐8.5, the projected average thawing depths by 2100 vary from 0.4 to 14.4 m or 2.1 to 17.7 m, and the increase in the top 10 m average temperature from 2015 to 2100 is 1.2–2.7°C or 1.9–3.0°C. The results show that the freeze‐thaw model uncertainty can sometimes dominate over that of GCM outputs, calling for site‐specific information to improve model accuracy. The framework is applicable for understanding permafrost degradation and related uncertainties at larger scales.more » « lessFree, publicly-accessible full text available October 1, 2026
An official website of the United States government
